19/02/2018

Pembahasan Soal UN Matematika SMA IPA 2017 Part. 3

Pembahasan Soal UN Matematika SMA IPA 2017 Part. 3

Pembahasan Soal UN Matematika SMA IPA 2017 No. 11 - 15_Hallo, Sobat Pejuang UN. Kali ini saya akan membahas Soal UN Matematika SMA IPA tahun 2017 part 3. Pada edisi kali ini soal-soalnya berisikan materi tentang :

  1. Kesamaan Dua Matriks
  2. Invers Matriks
  3. Sistem Persamaan Linier
  4. Nilai Maksimum Fungsi Obyektif_Program Linier
  5. Nilai Maksimum Fungsi Obyektif_Program Linier

Nah, bagi sobat pejuang UN yang ingin mengetahui pembahasan sebelumnya silahkan sobat klik pada tautan di bawah ini :
1. Pembahasan Soal UN Matematika SMA IPA 2017 Part.1 No. 1 - 5
2. Pembahasan Soal UN Matematika SMA IPA 2017 Part.2 No. 6 - 10


Soal Nomor 11
Diketahui : matriks $A= \begin{pmatrix} -2c & 4\\ 2 & 5 \end{pmatrix} ; B= \begin{pmatrix} -4 & -a\\ -b-5 & b \end{pmatrix} ; C= \begin{pmatrix} -1 & 3\\ 0 & 2 \end{pmatrix} ; $ dan $ D= \begin{pmatrix} 4 & 1\\ -2 & 3 \end{pmatrix}.$ Jika $A + B = CD,$ nilai $a + b + c = ......$
A. $-6$
B. $-2$
C. $0$
D. $6$
E. $8$
Pembahasan Soal Nomor 11
Penyelesaian :

Mencari Matriks A + B
$\begin {align} A + B & = \begin{pmatrix} -2c & 4\\ 2 & 5 \end{pmatrix} + \begin{pmatrix} -4 & -a\\ -b-5 & b \end{pmatrix} \\ \\ & = \begin{pmatrix} -2c - 4 & 4 - a\\ -b - 3 & b + 5 \end{pmatrix} \end {align}$


Mencari Matriks CD
$\begin {align} CD & = \begin{bmatrix} -1 & 3\\ 0 & 2 \end{bmatrix} \times \begin{bmatrix} 4 & 1\\ -2 & 3 \end{bmatrix} \\ \\ & = \begin{bmatrix} \left (-1.4 + 3.-2 \right) & \left (-1.1 + 3.3 \right) \\ \left (0.4 + 2.-2 \right) & \left (0.1 + 2.3 \right) \end{bmatrix} \\ \\ & = \begin{bmatrix} -4 - 6 & -1 + 9\\ 0 + -4 & 0 + 6 \end{bmatrix} \\ \\ & = \begin{bmatrix} -10 & 8\\ -4 & 6 \end{bmatrix} \end {align}$


Kesamaan Dua Matriks
$\begin {align} A + B & = CD \\ \begin{pmatrix} -2c - 4 & 4 - a\\ -b - 3 & b + 5 \end{pmatrix} & = \begin{pmatrix} -10 & 8\\ -4 & 6 \end{pmatrix} \end {align}$


Berdasarkan kesamaan dua matriks di atas, maka di peroleh data sebagai berikut
$\begin {align} 4 - a & = 8 \\ -a & = 8 - 4 \\ -a & = 4 \\ a & = -4 \\ \\ \\ b + 5 & = 6 \\ b & = 6 - 5 \\ b & = 1 \\ \\ \\ -2c - 4 & = -10 \\ -2c & = -10 + 4 \\ -2c & = -6 \\ c & = 3 \end {align}$

Maka nilai $a + b + c$ adalah ....
$\begin {align} a + b + c & = -4 + 1 + 3 \\ & = 0 \end {align}$

Jadi, nilai dari a + b + c adalah $0$

Jawab : C


Soal Nomor 12
Diketahui matriks $A= \begin{pmatrix} 2 & 3\\ 3 & 4 \end{pmatrix}, B= \begin{pmatrix} -5 & -2\\ 3 & 2 \end{pmatrix},$ dan matriks $AB = C$. Matriks $C^{-1}$ adalah invers matriks C, maka $C^{-1} = .......$
A. $\dfrac {1}{4} \begin{pmatrix} 2 & -2\\ 3 & -1 \end{pmatrix}$

B. $\dfrac {1}{4} \begin{pmatrix} -2 & 2\\ 3 & 1 \end{pmatrix}$

C. $\dfrac {1}{4} \begin{pmatrix} 2 & 2\\ -3 & 1 \end{pmatrix}$

D. $\dfrac {1}{4} \begin{pmatrix} 3 & -2\\ 2 & 1 \end{pmatrix}$

E. $\dfrac {1}{4} \begin{pmatrix} -3 & 2\\ -2 & 1 \end{pmatrix}$
Pembahasan Soal Nomor 12
Penyelesaian :
Rumus yang digunakan
Jika $A = \begin{pmatrix} a & b\\ c & d \end{pmatrix}$ Maka $A^{-1} = \dfrac {1}{ad - bc} \begin{pmatrix} d & -b\\ -c & a \end{pmatrix}$


Sebelum kita mencari invers matriks C. Pertama-tama kita harus mencari matriks C terlebih dahulu dengan cara mengalikan matriks A dengan matriks B

Mencari Matriks C
$\begin {align} C & = A.B \\ & = \begin{pmatrix} 2 & 3\\ 3 & 4 \end{pmatrix} \times \begin{pmatrix} -5 & -2\\ 3 & 2 \end{pmatrix} \\ \\ & = \begin{pmatrix} \left (2.-5 + 3.3 \right) & \left (2.-2 + 3.2 \right) \\ \left (3.-5 + 4.3 \right) & \left (3.-2 + 4.2 \right) \end{pmatrix} \\ \\ & = \begin{pmatrix} -10 + 9 & -4 + 6\\ -15 + 12 & -6 + 8 \end{pmatrix} \\ \\ & = \begin{pmatrix} -1 & 2\\ -3 & 2 \end{pmatrix} \end {align}$


Mencari Invers Matriks C
Untuk mencari Invers matriks C, mari kita gunakan rumus Invers matriks di atas.
$\begin {align} C & = \begin{pmatrix} -1 & 2\\ -3 & 2 \end{pmatrix} \\ \\ C^{-1} & = \dfrac {1}{\left (-1.2 \right) - \left (2.-3 \right)} \begin{pmatrix} 2 & -2\\ -\left (-3 \right) & -1 \end{pmatrix} \\ \\ & = \dfrac {1}{-2 + 6} \begin{pmatrix} 2 & -2\\ 3 & -1 \end{pmatrix} \\ \\ & = \dfrac {1}{4} \begin{pmatrix} 2 & -2\\ 3 & -1 \end{pmatrix} \end {align}$


Jadi, invers dari matriks C adalah $\dfrac {1}{4} \begin{pmatrix} 2 & -2\\ 3 & -1 \end{pmatrix}$


Jawab : A


Soal Nomor 13
Di toko yang sama, Dira, Anita, dan Sita membeli alat-alat tulis. Dira membeli 2 buku tulis, 1 pensil, dan 1 penggaris dengan harga Rp.19.000,00. Anita membeli 1 buku tulis, 2 pensil, dan 2 penggaris dengan harga Rp.20.000,00. Sedangkan Sita membeli 3 buku tulis, 2 pensil, dan 1 penggaris dengan harga Rp.28.000,00. Harga yang harus dibayar untuk membeli 1 buku tulis, 3 pensil, dan 2 penggaris adalah .......
A. $\text{Rp.23.000,00}$
B. $\text{Rp.24.000,00}$
C. $\text{Rp.25.000,00}$
D. $\text{Rp.27.000,00}$
E. $\text{Rp.33.000,00}$
Pembahasan Soal Nomor 13
Penyelesaian :
Misalkan $x, y,$ dan $z$ secara berurutan mewakili buku tulis, pensil, dan penggaris maka model matematikanya adalah ....
$\begin {alignat}{3} \text {Dira} & = 2x + y + z & = 19.000 & \quad \text{pers. 1}\\ \text {Anita} & = x + 2y + 2z & = 20.000 & \quad \text{pers. 2} \\ \text {Sita} & = 3x + 2y + z & = 28.000 & \quad \text{pers. 3} \end {alignat}$

Mencari nilai $x, \; y, \; \text{dan} \; z$
Pertama, kita eleminasi persamaan 1 dan persamaan 2
$\begin{array}{ll|l} 2x + y + z & = 19.000 & \times 2\\ x + 2y + 2z & = 20.000 & \times 1\\ \hline \end{array}$

$\begin{array} {l} 4x + 2y + 2z & = 38.000 \\ x + 2y + 2z & = 20.000 & \left(-\right)\\ \hline \qquad \qquad 3x & = 18.000 \\ \qquad \qquad x & = 6.000 \end{array}$


Kedua, kita eleminasi persamaan 1 dan persamaan 3
$\begin{array} {l} 3x + 2y + z & = 28.000 \\ 2x + y + z & = 19.000 & \left(-\right)\\ \hline \qquad \quad x + y & = 9.000 \\ \quad 6.000 + y & = 9.000 \\ \qquad \qquad y & = 3.000 \end{array}$


Ketiga, kita substitusikan nilai x dan y pada persamaan 1.
$\begin {align} 2x + y + z & = 19.000 \\ 2\left(6.000 \right) + 3.000 + z & = 19.000 \\ 12.000 + 3.000 + z & = 19.000 \\ 15.000 + z & = 19.000 \\ z & = 19.000 - 15.000 \\ z & = 4.000 \end {align}$


Maka, Harga yang harus dibayar untuk membeli 1 buku tulis, 3 pensil, dan 2 penggaris adalah ...
$\begin {align} x + 3y + 2z & = 6000 + 3 \left (3.000 \right) + 2 \left (4.000 \right)\\ & = 6.000 + 9.000 + 8.000 \\ & = 23.000 \end {align}$


Jadi, harga 1 buku tulis, 3 pensil, dan 2 penggaris adalah $\text{Rp.} 23.000,00$


Jawab : A


Soal Nomor 14
Perusahaan mebel memproduksi dua model meja makan. Biaya untuk membuat tiap meja makan model A adalah Rp.1.200.000,00 sedangkan untuk meja makan model B adalah Rp1.600.000,00. Waktu yang diperlukan untuk membuat setiap meja makan model A adalah 2 hari dan tiap meja makan model B adalah 5 hari. Modal yang tersedia sebesar Rp.22.000.000,00 dan waktu yang tersedia adalah 60 hari. Keuntungan tiap meja makan model A adalah Rp.1.000.000,00 sedangkan tiap meja makan model B adalah Rp.1.500.000,00. Keuntungan maksimum yang dapat diperoleh adalah ........
A. $\text{Rp.22.500.000,00}$
B. $\text{Rp.21.000.000,00}$
C. $\text{Rp.20.000.000,00}$
D. $\text{Rp.15.000.000,00}$
E. $\text{Rp.9.000.000,00}$
Pembahasan Soal Nomor 14
Penyelesaian :
Untuk mempermudah, mari kita susun kedalam bentuk tabel di bawah ini :
Meja
Model A
(x)
Model B
(y)
Biaya
1.200.000
3
1.600.000
4
22.000.000
55
Waktu
2
5
60
Keuntungan
1.000.000
1.500.000
-
Keterangan: angka yang dicoret berarti masing-masing dibagi 400.000.

Berdasarkan tabel bantuan di atas, maka model matematikanya adalah sebagai berikut :
$\begin {alignat}{3} 3x + 4y & = 55 & \quad \text{pers. 1}\\ 2x + 5y & = 60 & \quad \text{pers. 2} \end {alignat}$

Fungsi Obyektif: $U(x, y) = 1.000.000x + 1.500.000y$


Sekarang, kita mencari nilai $x$ dan $y$ dengan mengeleminasi persamaan 1 dan persamaan 2
$\begin{array}{ll|l} 3x + 4y & = 55 & \times 5\\ 2x + 5y & = 60 & \times 4\\ \hline \end{array}$

$\begin{array} {l} 15x + 20y & = 275 \\ 8x + 20y & = 240 & \left(-\right)\\ \hline \qquad \qquad 7x & = 35 \\ \qquad \qquad x & = 5 \end{array}$

Selanjutnya, kita subtitusikan nilai $x = 5$ ke persamaan 1
$\begin {align} 3x + 4y & = 55 \\ 3\left(5 \right) + 4 y & = 55 \\ 15 + 4y & = 55 \\ 4y & = 55 - 15 \\ 4y & = 40 \\ y & = 10 \end {align}$

Dengan demikian, keuntungan maksimum tercapai ketika x = 5 dan y = 10
$\begin {align} U(x, y) & = 1.000.000x + 1.500.000y \\ U(5, 10) & = 1.000.000x + 1.500.000y \\ & = 1.000.000 \left(5\right) + 1.500.000 \left(10\right) \\ & = 5.000.000 + 15.000.000 \\ & = 20.000.000 \end {align}$


Jadi, keuntungan maksimum yang dapat diperoleh adalah $\text {Rp.}20.000.000,00$


Jawab : C


Soal Nomor 15
Setiap hari seorang pengrajin tas memproduksi dua jenis tas. Modal untuk tas model I adalah Rp.20.000,00 dengan keuntungan 40%. Modal untuk tas model II adalah Rp.30.000,00 dengan keuntungan 30%. Jika modal yang tersedia setiap harinya adalah Rp.1.000.000,00 dan paling banyak hanya dapat memproduksi 40 tas, keuntungan terbesar yang dapat dicapai pengrajin tas tersebut adalah ........
A. $30\%$
B. $34\%$
C. $36\%$
D. $38\%$
E. $40\%$
Pembahasan Soal Nomor 15
Penyelesaian :
Agar lebih mudah dipahami, mari kita susun kedalam bentuk tabel di bawah ini :
Tas
Model I
(x)
Model II
(y)
40
Biaya
20.000
2
30.000
3
1.000.000
100
Keuntungan
40% × 20.000
= 8.000
30% × 30.000
= 9.000
-
Keterangan: angka yang dicoret berarti masing-masing dibagi 10.000.

Berdasarkan tabel bantuan di atas, diperoleh model matematika:
$\begin {alignat}{3} x + y & = 40 & \quad \text{pers. 1}\\ 2x + 3y & = 100 & \quad \text{pers. 2} \end {alignat}$

Fungsi Obyektif $U(x, y) = 8.000x + 9.000y$

Sekarang, kita mencari nilai $x$ dan $y$ dengan mengeleminasi persamaan 1 dan persamaan 2
$\begin{array}{ll|l} x + y & = 40 & \times 2\\ 2x + 3y & = 100 & \times 1\\ \hline \end{array}$

$\begin{array} {l} 2x + 2y & = 80 \\ 2x + 3y & = 100 & \left(-\right)\\ \hline \qquad -y & = -20 \\ \qquad y & = 20 \end{array}$

Selanjutnya, kita subtitusikan nilai $y = 20$ ke persamaan 1
$\begin {align} x + y & = 40 \\ x + 20 & = 40 \\ x & = 40 - 20 \\ x & = 20 \end {align}$

Dengan demikian, keuntungan maksimum akan tercapai saat $x = y = 20$
$\begin {align} U(x, y) & = 8.000x + 9.000y \\ U(20, 20) & = 8.000x + 9.000y \\ & = 8.000 \left(20\right) + 9.000 \left(20\right) \\ & = 160.000 + 180.000 \\ & = 340.000 \end {align}$


Dengan demikian, persentase keuntungan terbesar yang dapat dicapai pengrajin tas tersebut adalah
$\begin {align} \% \text{Untung} & = \dfrac {\text{Untung}}{\text{Harga Beli}} \times 100 \% \\ \\ & = \dfrac {340.000}{1.000.000} \times 100 \% \\ \\ & = 34\% \end {align}$


Jadi, persentase keuntungan terbesar yang dapat dicapai pengrajin tas tersebut adalah $34\%$


Jawab : B


Demikianlah pembahasan soal UN Matematika SMA IPA  2017 part.3 No. 11 - 15 dan jangan lupa kunjungi artikel menarik lainnya di blog ini.

NEXT :
Pembahasan Soal UN Matematika SMA IPA 2017 Part.4 No. 16 - 20

Terima kasih telah berkunjung dan meluangkan waktunya untuk membaca artikel sederhana ini yang berjudul "Pembahasan Soal UN Matematika SMA  No. 11 - 15". Semoga informasi yang terkandung dalam tulisan ini dapat bermanfaat bagi anda yang membutuhkannya.


Salam sukses untuk kita semua....!!!


Note : Silahkan dikoreksi dan berikan komentar jika ada kesalahan atau masih ada keambiguan baik dalam soal maupun penyelesaian soal ini.

Artikel Terkait

PERHATIAN !!!

Terima Kasih Telah Berkunjung ke Blog Caraono.com

1. Berkomentarlah dengan Baik dan Sopan
2. No Link Aktif
3. Mohon Maaf apabila ada pertanyaan anda yang belum atau tidak bisa dijawab karena saya manusia biasa bukan Google


Thanks for visiting and the comment :)
EmoticonEmoticon